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Methodological issues in studies of air pollution
and daily counts of deaths or hospital
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Abstract
Study objective - To review the issues and
methodologies in epidemiologic time
series studies of daily counts of mortality
and hospital admissions and imustrate
some of the methodologies.
Design - This is a review paper with an
example drawn from hospital admissions
of the elderly in Cleveland, Ohio, USA.
Main results - The central issue is control
for seasonality. Both over and under con-
trol are possible, and the use of diag-
nostics, including plots, is necessary.
Weather dependence is probably non-lin-
ear, and adequate methods are necessary
to adjust for this. In Cleveland, the use
of categorical variables for weather and
sinusoidal terms for filtering season are
illustrated. After control for season,
weather, and day of the week effects, hos-
pital admission of persons aged 65 and
older in Cleveland for respiratory illness
was associated with ozone (RR= 1-09, 95%
CI 1-02, 1.16) and particulates (PM,O (RR=
1-12, 95% CI 1-01, 1-24), and marginally
associated with sulphur dioxide (SO2)
(RR= 1.03, 95% CI=-099, 1-06). All of the
relative risks are for a 100 tg/m3 increase
in the pollutant.
Conclusions - Several adequate methods
exist to control for weather and seasonality
while examining the associations between
air pollution and daily counts ofmortality
and morbidity. In each case, care and
judgement are required.

(J7 Epidemiol Comm Health 1996;50(Suppl 1):S3-S1 1)

In 1952, an episode of high air pollution in
London was associated with approximately
4000 excess deaths.' Other air pollution dis-
asters in the Meuse Valley2 and Donora, PA,
USA3 clearly established that high con-
centrations of air pollution could result in sub-
stantial increases in daily deaths. Analyses of
data collected in London from 1958 to 197245
indicated that lower concentrations of air pol-
lution were associated with smaller increases
in daily deaths. Given the frequency with which
those concentrations occur, the attributable risk
from air pollution was not trivial. More re-
cently, daily death counts and daily hospital
admissions have been associated with air pol-
lution at relatively low levels in studies from
a number of groups on three continents. 4
Similar results have been seen in cohort

studies.4 42 Various methods have been used in
these analyses. This paper reviews the analytical
issues involved in these studies, discusses the
problems that can occur and methods for ad-
dressing them, and provides a detailed example,
using data on air pollution and hospital ad-
missions of the elderly for respiratory illness in
Cleveland, Ohio.

Methods
The study of the relationship between daily
counts of health events and daily air pollution
raises distributional issues and modelling
issues. These are discussed in tum.

DISTRIBUTIONAL ISSUES
On any given day, only a small portion of the
population dies or is admitted to hospital. The
number that do is a count; that is, it can
only take on values limited to the non-negative
integers. This suggests that a Poisson process
is the underlying mechanism being modelled.
In a Poisson process, a homogeneous risk to
the underlying population is assumed. Given
that underlying risk, the expected number of
deaths on any day is B. Then the probability
of y deaths occuring on a given day is given by

prob(y/X) = e X
y! (1)

The Poisson process may not be stationary
over time, that is, the underlying risk k varies
with time varying predictor variables X1...Xp.
In these analyses, the unit of observation is the
day. Hence, while the underlying risk varies
with some factors such as age or cigarette
smoking, since the age distribution and smok-
ing history of the population do not vary from
day to day, these factors will not influence k.
This is a key advantage of the time series
approach. One feature of the Poisson process
is that even if all the covariates predictive of k
were known and measured without error, there
would still be considerable unexplained vari-
ability in daily mortality. That is because the
explanatory variables can at best predict k. But
even if X is known with certainty, the Poisson
process ensures stochastic variability around
that expected count, as shown in the equation
(1). In a classic stationary Poisson process, the
variance of y is equal to k. Many actual count
processes are overdispersed, with a variance
proportional to k. Hence R2 is unlikely to be
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high in a Poisson process, and is inappropriate
as a measure of goodness of fit.

Poisson regression analysis is now available
on standard statistical packages, and most of
the studies of mortality and hospital admission
counts published in recent years have used this
approach. The canonical Poisson regression is
a relative risk model. It seems reasonable to
suppose that if the population being studied
doubled, while keeping its characteristics and
all other risk factors constant, the number of
increased cases due to air pollution and/or
weather (if any) would also double. Since the
baseline number of cases would also double
under that scenario, this implies a relative risk
model. In that model we assume:

Log(E(Y)) = P + PIX1 + PpXp (2)

where Y is the count of deaths or hospital
admissions on a given day, E(Y) is the expected
value of Y on that day (corresponding to k in
equation 1), Xl..Xp are the predictors of daily
counts, and f3. . I,p are the regression coefficients
for those predictors.

Recently, some papers have explored the
sensitivity of results to whether the mortality
counts were modelled as Poisson or Gaussian
processes.22 7 They have not shown much
difference in either effect estimates or t stat-
istics. This result is understandable in these
analyses. The relative risk for most ofthe factors
examined in these models (season, weather,
or air pollution) is not large. The principal
difference between a least squares regression
of the logarithm of death counts and a true
Poisson regression is the heteroscedasticity in
the variance built into the Poisson model.
Across a narrow range of expected values, this
will not be large, and hence one would not
expect much difference in these daily time
series models.

MODELLING ISSUES
Means model - season and trend
In all ofepidemiology, a basic issue in modelling
is to control properly for potential confounding.
Time series studies have some unique features
in this regard. Many variables show systematic
variation in time. For example, the number of
AIDS cases in the world and the value of most
stock market indices increased over the 1980s.
This does not mean that we believe they are
causally associated. Since any two variables
that show a long term trend must be correlated,
searches for correlations that are more likely to
be causal must exclude these trends. These
trends may not be linear. For example, the
world population is increasing exponentially
with time. The decline in cardiovascular death
rates may be levelling off. Nevertheless, for
short intervals, this may be adequately ap-
proximated with a linear time trend variable.
As the number of years studied grows, the
need for a non-linear trend model probably
increases.
A second common attribute of many vari-

ables that evolve over time is seasonality. Many
health, weather, and pollution variables show

systematic variation over the course of the year.
These variations would be present even if these
factors were not causally related, and will in-
duce correlations among them. And many sea-
sonal variations in health outcomes may be
due to more general factors, such as people
spending more time indoors, rather than
weather per se. Again, to focus on possibly
causal associations with acute effects, it is
necessary to remove these patterns. They are
often described as long wavelength patterns,
because the interval (in days) describing the
pattern is long. This should not be interpreted
as indicating that the patterns are sinusoidal.
While the annual pattern is roughly periodic,
it need not be sinusoidal or even symmetric -

for example, there can be long winters and
short summers, step inclines and flat declines,
etc.
A final systematic component that may bias

time series regressions involves calendar spe-
cific days. Day of week or holiday effects fall in
this category. These patterns are not necessarily
present in all data, but they occur often enough
that they should be checked.

MODELLING APPROACHES FOR SEASON AND
TREND
Several methods exist for dealing with these
issues. These are discussed in turn.

Smoothing
For Gaussian data, one possibility is to filter
these patterns out of the data before analysing
them. For example, in analyses of daily counts
of deaths in London in the 1960s4 a 15 day
moving average was computed. That is, the
mean of daily deaths on the current day, the
previous week, and the next week was com-
puted. This moving average represents a good
estimate of the expected number of deaths on
that day, based on the long wavelength patterns
in the data. Here long wavelength is taken to
mean any patterns of 15 days or longer. The
deviation from that moving average represents
the shorter term fluctuations about that longer
term pattern. They represent the excursions of
a few days' duration, about the general pattern.
The authors of several papers on this data set
used this approach to focus the investigation
on the correlation between short term changes
in daily deaths and short term changes in air
pollution and weather.45
The 15 day moving average filter has an

unattractive feature. In estimating the number
of deaths to expect today, it gives equal weight
to all deaths in the preceding and next week,
and zero weight to deaths more distant in time.
Intuitively, the weight given to the information
on other days should decrease as the days
become further separated in time. Moreover,
the sudden decrease in weight from one to
zero between the seventh and eighth prior day
creates distortions in the filtered data. These
distortions occur in the short wavelength pat-
terns that we seek to keep. They can be effect-
ively reduced, and better predictions obtained
by computing weighted moving averages. In
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the statististics literature, this is referred to as
kernal smoothing.43 The question of whether
15 days was the appropriate number of days
to choose will be addressed below.
The mean number of deaths in London win-

ters in the 1960s was almost 300, which allows
a Gaussian approximation to the count data.
Most studies today involve fewer counts, where
a Poisson analysis is called for. WVhile filtered
Gaussian data is still Gaussian, filtered Poisson
data is not Poisson. Hence prefiltering is not
possible. The goal is still the same, however,
and the solution is to put the filter in the
regression. This is analogous to controlling for
confounders in the regression model, and can
be done in a number of ways. The most direct
approach is merely the generalisation of the
above process. The moving average can be
incorporated into Poisson regressions in a
straightforward way. Since Poisson regressions
are usually relative risk models, Burnett et al25
estimated a Poisson regression where the rel-
ative risk due to weather and air pollution was
relative to the running moving average of daily
hospital admissions. This can be accomplished
by modifying equation (2):

Log(E(Y)) = Po±+ PfX, +.. + ip3Xp+log(WMA(Y)) (3)

where WMA (Y) denotes the weighted moving
average of Y.
An alternative approach that generalises on

the use of moving averages is the generalised
additive model.44 The generalised additive
model allows a Poisson regression to be fitted
which controls for a smooth function of time
using moving averages or other types of
smoothing functions. This is also quite a useful
approach to control for time trend and season.
In addition, it allows generalisation to multi-
variate smoothing. The model above uses the
average to control for long wavelength patterns
in the data. The other covariates, such as tem-
perature and humidity, are treated as linear
factors predicting the daily counts. However,
the dependence of mortality on temperature is
usually non-linear, with raised death rates on
both very hot and very cold days. In some
cases, a V or U shaped dependence with two
linear or quadratic terms has sufficed.36 In other
cases, a curvilinear dependence was found.2232
Of course, if one believes that the true de-
pendence on temperature is quadratic, one can
use the square of temperature as one of the
predictor variables. However, that requires
knowledge not merely that the dependence may
be non-linear, but that it is parabolic. While
the dependence of mortality on temperature
may be U shaped, the parabola is not the only
U shaped function. In the absence ofany theory
to guide us, a flexible approach to covariate
control is appropriate. A more flexible approach
available in the generalised additive model is
to treat temperature, and the other continuous
variables, as smooth functions in the same
manner as the time covariate.
Hence in the generalised additive model, we

assume:

p

Log(E(Y)) =ZS,(X,) (4)

Where the Xi are the predictor variables,
which include time, and the Si are the smooth
functions of those variables. The data deter-
mine the shape of the smooth functions. There
are many different smoothing algorithms in
addition to the weighted moving average, al-
though they are mostly based on variants of
that principal.44 The principle issue in the use
of these smooth non-parametric functions is
the choice of the fraction of the data (called
the smoothing parameter) that will be included
in the running smooth. Intuitively, a small win-
dow is necessary to fit the time trend in the
data adequately, since we expect a somewhat
periodic pattern within each of the years of the
study. Conversely, for weather variables, we
expect that while there may be non-linearities,
these will be more global, and a large number
of "wiggles" on top of that pattern are unlikely
to be causal. More formal approaches exist to
choosing the fraction of the data to include.
These include Akaike's information criteria and
cross validation.45"7 The generalised additive
model approach has been used successfully in
analyses of counts of both daily deaths and
daily hospital admissions.2 2227 30 32

Semiparametric approaches
Smoothing is not the only approach. An al-
ternative, flexible approach is to use regression
spline functions. Here, we divide each variable
(time, temperature, etc) up into intervals. A
cubic polynomial is fitted to each interval, and
they are required to join smoothly at the bound-
aries of the intervals. For example, a cubic
polynomial can be fitted to each three month
interval of time, or to each 10°C interval of
temperature. Since separate polynomials are
fitted in each interval, the approach can capture
local patterns. The central issue here, parallel
to the choice of window above, is the choice
of number of intervals. This choice can be
based on a priori or theoretical considerations,
or such data-driven approaches as cross val-
idation and the information criteria sited above.

Parametric approaches
A completely different approach involves the
use of sinusoidal terms to fit the long wave-
length pattern in the data. Clearly, the annual
cycle is relatively periodic. While the pattern
of mortality over time is unlikely to be a pure
sine wave, the sum of sine waves of increasing
frequency can fit more complex functions.
Hence trigonometric filtering has also been
used in studies of air pollution and daily mor-
bidity or mortality.2248 Here, the question equi-
valent to the choice of window is the choice
of for which frequencies trigonometric terms
should be included in the model. Again, a priori
considerations can lead one to choose to filter
out all patterns above a given wavelength, or
statistical considerations can be used to choose
the frequencies to fit. Not all sinusoidal terms
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begin at zero on 1 January. Hence if a sine wave
of a given frequency is fitted in a regression, a
cosine wave of the same frequency must be
fitted to account adequately for the phase of
the pattern. One concern with such a model is
that it assumes that the seasonal peak is the
same height and occurs at the same time each
year. However, there are patterns in the in-
tensity of, for example, influenza epidemics,
with two year cycles both observed in practice
and justified by mathematical modelling. Im-
provements in heating and air conditioning
may result in declining peak to trough ratios
over time. The maximal week of the epidemic
varies, with less pattern, over time. To some
extent these issues can be dealt with by fitting
two year cycles (or longer) to the data as well.
However, in some instances, different sinu-
soidal terms will have to be fitted for different
periods. For longer time series, this requires
increasing attention.
A classic epidemiological approach to the

model specification problem is to divide con-
tinuous data into categories. This is often con-
sidered to be model free, however it in fact
fits a histogram to the data. Hence, dummy
variables for season,'5 month ofyear,39 or month
of study26 have been used to control for long
wavelength patterns. The use of seasonal
dummy variables risks underspecifying and the
use of month of study dummy variables risks
over specifying the model.

How much filtering
The choice of 15 days in the original London
studies seems to be an artifact of wanting to
have a week on either side of the day whose
expectation was being computed. What is the
best choice? The best choice may in fact vary
from study to study depending on other local
characteristics such as meteorology, etc, and is
likely to be larger than 15 days. The objective
criteria seem to have a natural appeal. However,
the problems with these approaches (for ex-
ample Akaike's information criteria) is that they
are objective answers to the wrong question.
The question we want to answer is, "Seasonal
and other long wavelength patterns are too
common in most time varying risk factors,
including those that were not measured in
the study, to allow them to contribute to the
correlation between air pollution and daily
mortality or morbidity. At what wavelength do
we believe this is no longer true?" The question
we can answer objectively is, "The daily vari-
ation in death counts contains both pattern
and noise. At what point in fitting a predictive
model to the data, using time as the predictor,
do we loose confidence that we are fitting
pattern and not noise?" If in noisy data the
objective criteria suggest leaving in fluctuations
with wavelengths of five months, should we
feel comfortable with that decision or worry
that there would be less risk of confounding if
more filtering were done? If in a data set with
high counts, pattern is detected down to wave-
lengths of 10 days, should we throw away so
much information or allow air pollution the
opportunity to explain the observed short wave-

length pattern? These are questions which re-
quire epidemiological judgment. Our goal is to
filter out not all pattern in the data, but only
that pattern where we believe the risk of con-
founding by an omitted variable is high.
What is the risk of overfiltering? One risk is

loss of power. By removing shorter and shorter
wavelength components from the data we are
effectively reducing the sample size, since less
and less variation in the data is kept. In principle
this can be resolved by obtaining longer time
series. There is also a potential for bias. If
cumulative exposure over several days is neces-
sary to produce mortality effects, too much
filtering risks throwing away precisely those
patterns of exposure whose effects we wish to
examine. Several methods exist to help with
the epidemiologic judgment that is required.

Diagnostics plots
No matter which method is used to deal with
long wavelength patterns, diagnosic plots are
critical to evaluating the success of the ap-
proach. A plot of the residuals versus time,
particularly if a smooth curve is fitted to the
residual plot, can often identify long wavelength
patterns that remain. Spectral density or
periodogram plots show the amount of the
variation in the data that occurs in a given
frequency range. These are also helpful. How-
ever, there are certain patterns that are hard to
detect when resolved into trigonometric spec-
tra. A basic issue with frequency domain plots
is that deviations from perfect sinusoidal shapes
of long wavelength components show up as
short wavelength components. It may be easier
to determine if these are adequately dealt with
(without over filtering) by examining time
plots. For example, aperiodic patterns, such as
a three month excursion that occurs only in
one year, can more readily be detected in a
residual time series plot. Variations in the mag-
nitude of the seasonal pattern may also be
easier to see in the time plot. Other approaches,
such as the use of wavelets49 as basis functions
instead of trigonometric functions, may prove
useful here, but have not yet been explored.

In addition to looking at residual plots, plots
of the predicted outcome over time based on
the seasonal model are quite useful. If one
compares a series of seasonal models that
represent increasing filtering (of whatever
method), one can readily see when the ad-
ditional filtering is beginning to predict shorter
term patterns that one wishes to leave for the
explanatory variables in the model. By applying
this approach to different filtering schemes, one
can also determine, in a given data set, whether
one approach has advantages over another.
It is possible that one method (for example
smoothing, splines, trigonometric filters,
monthly dummies) can do a better job on
fitting the shape of the seasonal pattern before
beginning to pick up short term patterns.
One alternative approach that has been sug-

gested50 is to rely on a Durbin-Watson statistic
to determine whether seasonality has been con-
trolled for. However, a Durbin-Watson statistic
is a measure of first order autocorrelation for
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Gaussian data, and a value near two neither
indicates that autocorrelation or seasonality is
satisfactorily accounted for. For example, Pope
has reported that before control for season,
daily cardiovascular mortality in Zurich had a
Durbin-Watson statistic of 1-94 (Pope C A,
personal communication).

Modelling approaches for weather
After season and trend, weather terms are the
most important covariates to enter the model.
Since season and other long wavelength pat-
terns are being removed by other methods,
these weather variables will be there to carry
information about the effects of short term
variations in weather on mortality or morbidity.
Two types of weather variable can be used. One
is to use the primary variables that are likely to
be plausibly associated with mortality. These
are widely agreed to be temperature and humid-
ity. Whether minimum, maximum, or mean
temperature is the best predictor, and whether
there is any additional information in one meas-
ure after control for the other is not resolved.
An alternative approach that has occasionally
been tried is to use factor analysis or judgmental
classification into weather patterns to come up
with categoric variables for different types of
weather patterns to put into the regression
model. Little systematic evaluation has been
done to evaluate the relative performance ofthe
two approaches. The weather pattern category
approach defines natural patterns, but whether
those natural patterns are the best predictors
of mortality or whether certain continuous
characteristics that cut across them may better
predict mortality or morbidity is not certain.
As mentioned previously, the dependence of

morbidity and mortality on weather is probably
non-linear, or at least piecewise linear. A num-
ber of methods exist for modelling non-linear
dependencies of daily counts of mortality and
morbidity on weather. These techniques in-
clude smoothing, multiple dummy variables,
splines, or non-linear polynomials, and com-
binations of them. Whichever is chosen, some
attention must be paid to the potential non-
linearities, and again, diagnostic plots are crit-
ical in helping to determine if the model was
well specified. Interactions between tem-
perature and humidity also need to be ex-
amined.

Day of week, holiday, and influenza epidemics
Whatever the benefits of reducing pollution
concentrations, it is clear that Monday is bad
for people's health.5' 52 Weekends, in contrast,
are often healthful. These variables should be
considered in time series studies, although a
number of published reports indicate that their
inclusion does not have a major impact on the
coefficients of air pollution.'6 Holidays may
have similar effects. Influenza epidemics were
a major concern as a potential confounder
in studies done in the 1 960s. However, an
adequate seasonal model reduces the level of
concern. Nevertheless, if influenza data are
available, they should be used. Approaches

have included dummy variables for influenza
epidemic weeks, as well as some modelling
approaches for the shape of the epidemic.

Lag structure (delayed effects)
The effects of all the explanatory variables may
be immediate, or may occur with some lag. In
addition, there may be a disturbed lag structure.
That is, cold weather could effect mortality
both on the concurrent days and on the next
day. In that case, the effect of cold weather on
any day's mortality would be the sum of the
effect on that day and the previous day. It is
probable that the impact oftoday's temperature
and yesterday's temperature on today's death
count will differ in magnitude. One approach
to this is to examine models with multiple
lags ofthe explanatory variables simultaneously
included. Because those variables are serially
correlated, this will often produce unstable es-
timates. Instead, a constraint is often put on the
system. The simplest constraint is the moving
average. If the exposure variable is defined to
be the mean of a two or three day moving
average of the explanatory variable, the con-
tribution of multiple days can be estimated,
subject to the constraint that the effect of each
day is identical. This is helpful in at least
identifying the existence ofmultiple day effects,
but the constraint is not very realistic. A more
realistic constraint would allow the influence
of exposure to decline with time. One such
approach is the geometrically distributed lag
model. In that model, we would assume:

log(E(Y)) = covariates + 1(Xi+ oXi-l
+ oc2Xi-2 + o3 Xi-3 + ..

Such a model can be fitted iteratively. Poly-
nomial distributed lag models53 fit a polynomial
function to the pattern ofthe lagged effects. For
example, a second order polynomial centred at
lag 1 would fit a model where the largest impact
of temperature was from the previous day's
temperature, and the impact ofthe temperature
two day's before, and on the concurrent day
was the same, and reduced from the lag 1 day
by a factor defined by the parabolic function
that was fitted. Programs for estimating these
models are common in econometrics, but they
have not been widely explored in epidemiology.
Standard statistical packages such as SAS do
include these programs, although not for Pois-
son models. As with geometric distributed lag
models, they can be fitted to Poisson regression
using iterative approaches, for example using
proc NLIN in SAS. Greater attention needs to
be paid to these approaches in the future.
One issue is how far back to go in exploring

the lags. Exploring too many lag structures
risks identifying non-causal relationships that
have occured by chance. If the seasonal model
is relied upon to deal with long wavelength
patterns, then restrictions to a week or less seem
most reasonable for the exploratory variables.

Interactions
One question that is sometimes explored is
whether the association between mortality and/
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Table 1 Centile points of the health and environmental data for Cleveland, Ohio during
the years 1988-90

Variable 10% 25% 50% 75% 90% Mean

Admissions 13 16 21 26 32 22
Temperature ('F) 27 37 51 67 74 51
Dew point ('F) 17 27 42 56 64 41
SO2 (ppb) 13 20 31 45 61 35
03ppb* 30 40 53 68 88 56
PM,0 (tg/m3) 19 26 39 56 72 43

* Hourly maximum, other pollutants are 24 hour average

or morbidity and air pollution varies with sea-

son or other factors. This raises several issues.
The major one is epidemiological. To avoid
increased risks of drawing false conclusions,
standard epidemiological practice requires that
hypotheses be generated first, and then tested.
The first question that must be addressed is
what is the hypothesis that is being tested? In
some cases, this is clear. Ozone concentrations
are very low during cold weather, and people
spend less time outdoors during cold weather,
reducing exposure. While ozone does penetrate
indoors, it also reacts with fabric and other
surfaces indoors. During cold weather, when
windows and doors are shut, the indoor con-

centrations are a very small fraction ofthe (low)
outdoor concentrations. Hence, overall, we ex-

pect that the ratio of population average per-

sonal exposure to outdoor monitored exposure

will be lower in the winter. Therefore, one

hypothesises a different, and smaller, ozone

slope in the colder weather. Having specified
this rationale, a test ofthe hypothesis is justified.
The next issues are statistical. Given the

small overall effect size for air pollution, there
is limited power to detect interactions. Care
must be taken to maximize that power. Dividing
the sample into four calendar quarters or even

shorter intervals is probably a recipe for in-
stability, rather than inference. Given the basic
hypothesis outlined above, a division into two
six month periods, when weather is warmer

and colder, seems most reasonable. Dividing
into more categories than justified by prior
specific hypothesis risks the use of a postiori
hypotheses which may just be attempts to ra-

tionalise patterns that are merely instability.
The published reports on stepwise regression
are relevant here. Next, we must determine the
specific hypothesis being tested. If the hy-
pothesis is whether the slope is different from
zero in each season, then separate regressions
for each season are in order. However, if there
is a significant association overall, then it is
hard to see why exposure would produce no

effect in some seasons. Rather, it seems more

reasonable to hypothesise that the slope may
be different, because the relationship between
outdoor and personal exposure is different. In
that case, an interaction term is more ap-
propriate. It tests whether the slope in one

season is different than in the other.

Multipollutant models
One occasionally sees studies that have fitted
regression models using four or even more

collinear pollutants in the same regression, and
sought to draw inferences about which variables

were causal from that model. Other studies
have used stepwise procedures, again with
many pollutants in the candidate list. Some
times, more than one proxy for particulate
air pollution has been included in the same
regression model. Given the non-trivial cor-
relation of the pollutant variables, and the rel-
atively low explanatory power of air pollution
for mortality or hospital admissions, such pro-
cedures risk letting the noise in the data choose
the pollutant. The APHEA project has taken
a more cautious approach. Single pollutant
models are fitted initially. If more than one
pollutant seems to be associated with the out-
come, then attempts are made to separate the
pollutants by examining associations with one
pollutant stratified by the level of the other
pollutant, etc. Greater reliance in APHEA is
being placed on examination of associations
across study centres as a way to help separate
the effects of individual pollutants.

Covariance model
Measurements connected in time and/or space,
such as repeated measurements of the same
population on consecutive days or meas-
urements of persons from nearby geographical
areas, are likely to be correlated and not in-
dependent. In the case where two observations
closer together in time are more alike than two
randomly chosen observations, this is referred
to as serial correlation. If the serial correlation
in the outcome is due to omitted covariates
(for example, epidemics) or imperfectly con-
trolled for covariates (for example, weather),
then that omission or imperfect control will
leave serial correlation in the residuals of the
model. Serial correlation will not bias the re-
gression coefficients, but will bias the estimated
standard errors. As when modelling the ex-
pected value, the specification ofa model for the
covariance with several parameters can allow a
parsimonious description of this correlation.
In the Gaussian case, this model assumes, as
before, that:

E(Y?) =X3
but

COV(Y'YJ)= ViJ
If the structure of V (defined above) is

known, then a generalised least squares ap-
proach yields the maximum likelihood es-
timate, that is:

= (XV-'X)>'XV'
and

COV(1) = 2(xv-lXY -1

In general, the correlation structure of V is
not known a priori and must be estimated from
the data. In order to avoid using up degrees of
freedom, it is usually necessary to remodel the
correlation in the covariance as a function of
one or more parameters. For serially correlated
data, autoregressive and moving average
models represent efficient schemes. In bio-
medical applications, autoregressive processes
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Figure 1 A plot of daily counts of hospital admissions ofpersons aged 65 and older in
Cleveland, Ohio for respiratory illness (ICD 9 460-519).
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Figure 2 A plot of the predicted number of daily hospital admissions ofpersons aged 65
and older in Cleveland, Ohio for respiratory illness based on a model including sinusoidal
terms with periods 1 year, six months, four months, and three months.
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Figure 3 A plot of the predicted number of daily hospital admissions ofpersons aged 65
and older in Cleveland, Ohio for respiratory illness including sinusoidal terms with periods
of two years, one year, six months, 4-53 months, four months, and three months plus a

linear quadratic time trend.

are more usually found. This estimation
process generally entails an iterative process.
A similar approach exists for Poisson re-

gression models. As in a classic Poisson re-
gression, the model assumes

log[E(Yi)] =X43

where Xi is the matrix of covariates on day i,
Y, the mortality counts on day i, and E denotes
expected value. The covariance matrix is as-
sumed to be of the form:

OAl/2JM 1/2

where Aj = E(Y) 8jj, the classic Poisson co-
variance, ct is the overdispersion parameter,
Aj= 1 when i-j and 0 otherwise, and R is an
autoregressive matrix. The order of R is es-
timated empirically from the data. ct is es-
timated from the residual X2 using the method
of McCullagh and Nelder.4
Liang and Zeger" have shown that even if

R is poorly estimated, it is possible to compute
robust variance estimators, using the sandwich
estimator, in order to obtain assymptotically
unbiased estimates of the standard errors.
However, this relies on having multiple time
series. While this is true in panel studies, in a
study of daily mortality there is only one time
series and robust variance estimates cannot be
computed. If the number of years examined is
large, each year can be treated as a replicate
and robust estimates than computed, but this
is often not the case. Hence, as in classic time
series, it is necessary to pay attention to mod-
elling R adequately. That is, the order of the
autoregressive process must be determined.
The usual method for determining this is to
examine partial autocorrelation functions ofthe
residuals. Again, it should be noted that the
Durbin-Watson statistic only measures first
order autocorrelation and will be inadequate
for this task. Once the order is specified, R
can be specified and an autoregressive Poisson
regression estimated.

In general, after control for season and trend,
the magnitude of the serial correlation in mor-
tality and hospital admissions data is low (for
example, in the order of 050-0 20) and the
estimates will be little changed by incorporating
serial correlation.

Example and illustration
To illustrate these issues, we have used data on
hospital admissions for all respiratory disease in
persons aged 65 and older in Cayahoga County,
which includes the city of Cleveland, Ohio.
The data are for the years 1988-90. Table 1
shows some summary statistics on the health
and environmental data from Cleveland. Daily
monitoring was available for sulphur dioxide
(SO2). For ozone (03), monitoring was only
done during the warm season. For particulates
(PM1O), daily monitoring began in the autumn
of 1988, with occasional monitoring earlier in
the year.

Figure 1 shows a plot of hospital admissions
for respiratory disease during the study period.
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Table 2 Regression results from Poisson regression models
using trgnometric filtering. Results are for a 100 pg/m3
increase in each patient

Pollutant RR (95% CI)

03* 1.09 (1-02, 1-16)
PM0t 1-12 (1 01, 1-24)
S02t 1-03 (099, 1-06)

0 20 40 60 80
Temperature

Figure 4 The mean residual number of hospital admissions of persons aged 65 and old
in Cleveland, Ohio for respiratory illness from the seasonal model (fig 3) in relation to
seven categories of mean daily temperature.
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Figure 5 The predicted number of daily hospital admissions ofpersons aged 65 and ol
in Cleveland, Ohio for respiratory illness. The model included sinusoidal terms with
periods two years, one year, six months, 4-53 months, four months, and three months,
plus a linear and quadratic time trend. In addition, dummy variables for seven categor
each of temperature and humidity and daily dummy variables were included.

.

0 200 400 600
Time

800 1000

Figure 6 The residuals of the final model without air pollution plotted against day of
study.

* Average of the hourly maximum for the two days prior to
admission.
t Average of two days prior to admission.
t Average of day of admission and day before admission.

A clear seasonal pattern is evident. This pattern
can be roughly predicted using a model in-
cluding sine and cosine terms for periods of 12
months, 6 months, 4 months, and 3 months
(fig 2). While that model captures the basic

'der seasonal pattern, it has some disturbing fea-
tures. The magnitude of the winter peaks is
the same each year, which does not appear to
be true in figure 1. And the shoulders on the
seasonal patterns are the same each year. Since
these probably result from respiratory epi-
demics, this seems an unlikely model. When
the model is expanded to include sinusoidal
terms with a two year period and linear and
quadratic time trend terms, it shows annual
peaks which differ in magnitude, somewhat
less simple shapes to the peaks, and slightly

, different shaped shoulders. Examination of the
spectral density function of the residuals of this
model identified a cycle with period of 2-65
cycles per year. Incorporating sine and cosine
terms for this frequency produced a predicted
curve (fig 3) that showed different shaped peaks
for the different years, including major differ-
ences in the shoulders. This picture seems more
realistic than the previous ones, and no other
spectral frequencies were significantly elevated
in magnitude.
Temperature and day ofthe week terms were

then added to that model. Figure 4 shows the
Ider pattern of admissions by seven categories of

daily temperature. Over most of the tem-
ies perature range, a classic U shaped dose re-

sponse was seen, with increases on cold and
hot days. However, as the mean daily tem-
perature fell below 20°F, hospital admissions
actually decreased in Cleveland. This may re-
flect the nature ofthe population being studied.
In very cold weather, they simply do not go
outside and and are not exposed to the weather.
It certainly illustrates the advantage of taking
a flexible approach to modelling the de-
pendence on temperature. The pattern of ad-
missions by day of the week was as expected
- low on the weekends. Figure 5 shows the
predicted number of admissions each day from
the final model without air pollution, and figure
6 shows the residuals from that model. No
seasonal pattern is evident in that plot, although
one possible outlier is apparent. Once this
model was completed, individual pollutants
were tested. The results of those regressions
are shown in table 2. Significant associations
are seen for PM1o and 03, with somewhat
weaker evidence for SO2. Excluding the pos-
sible outlier had a trivial impact on all of the
associations.
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